## The hydroxylation of the enantiomeric hexahydro-10-methylnaphthal-4en-3-ones<sup>†</sup> by Cephalosporium aphidicola

Aslam Parvez and James R Hanson\*

Department of Chemistry, University of Sussex, Brighton, Sussex BN1 9QJ, UK

The enantiomeric hexahydro-10-methylnaphthal-4-en-3-ones are hydroxylated by the fungus, Cephalosporium aphidicola at C-6 and at C-9 (steroid-like enantiomer) or at C-1 (steriod enantiomer).

Keywords: microbiological hydroxylation, enantiomers, hexahydronaphthalenones, Cephalosporium aphidicola

We have shown that the fungus Cephalosporium aphidicola is a useful organism for the microbiological hydroxylation of steroids. 1 It hydroxylates the steroidal unsaturated ketones progesterone and testosterone at C-6β and C-11α.<sup>2,3</sup> Microorganisms have the ability to distinguish between enantiomers in biotransformations. 4 It was, therefore, of interest to examine the hydroxylation of the commercially available hexahydro-10-methylnaphthal-4-en-3-ones, 1 and 5,5 by Cephalosporium aphidicola. These hexahydronaphthalenones might be considered as models for rings A and B of the steroids. The hydroxylation of the racemate by Rhizopus arrhizus has been shown to occur at C-6<sup>6</sup> whilst the transformation at C-6 and C-8 has been reported<sup>7</sup> of the individual enantiomers by a number of common organisms.

The (+)-enantiomer 1 which has the same absolute stereochemistry as the steroids, was incubated with C. aphidicola on shake culture for 6 days. Two metabolites, 2 and 3, were separated by chromatography. The location of the hydroxyl groups followed from changes in the <sup>13</sup>C NMR spectrum (see Table 1). In the 6β-hydroxy compound 2, there was a  $\gamma$ -gauche shielding of C-8 which has been observed in the steroid series.<sup>2,3</sup> The <sup>1</sup>H NMR signal for the C-10β methyl group showed significant downfield shift ( $\Delta\delta$  0.23 ppm) whilst the CH(OH) resonance was a typical poorly resolved narrow triplet. The location of the hydroxyl group in 3 followed from a downfield shift for the C-10  $^{13}$ C NMR signal ( $\Delta\delta$  5.8 ppm) and a  $\gamma$ -gauche shielding of the C-10 $\beta$  methyl group ( $\Delta\delta$  6.5 ppm). The <sup>1</sup>H NMR signal for the CH(OH) was a double-doublet (J=11.6 and 4.3 Hz) consistent with an equatorial alcohol. This alcohol 3 was identical to the reduction product of the Wieland-Miescher ketone 48 obtained using sodium borohydride in ethanol at  $0^{\circ}$  for a short time.

Incubation of the enantiomer 5 gave a poor yield of two metabolities. The C- $6\alpha$  (axial) alcohol **6** was identified by its <sup>1</sup>H NMR spectrum. The second product 7, was identified as the  $C-1\alpha$  alcohol from the changes in the position of the C-2 and C-10 <sup>13</sup>C NMR signals (see Table 1). The stereochemistry was assigned on the basis of the  $\gamma$ -gauche shielding ( $\Delta\delta$  5.8 ppm) and on the mulitiplicity of the CH(OH) signal (dd, J=4,6 and 9.3 Hz) in the <sup>1</sup>H NMR spectrum.

These results show that the stereochemistry of hydroxylation at the allylic C-6 position is determined by axial attack, possibly on the enolate of the unsaturated ketone, 6 irrespective of the absolute stereochemistry. On the other hand C-1 $\alpha$  and C-9 $\beta$  are related by rotation around the C-5:C-10 bond. The site and stereochemistry of hydroxylation of the two enantiomers [C-9 $\beta$  in 1 and C-1 $\alpha$  in 5] may be determined by placing the C-10 methyl group in the same hydrophobic pocket of the hydroxylase.

## **Experimental**

<sup>1</sup>H and <sup>13</sup>C NMR spectra were determined at 360 and 90.5 MHz respectively for solutions in deuteriochloroform. IR spectra were

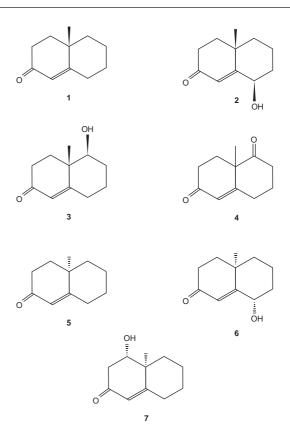



Table 1 <sup>13</sup>C NMR data (determined in CDCl<sub>3</sub> at 90.5 MHz)

|            | Compound |       |       |       |
|------------|----------|-------|-------|-------|
| Carbon no. | 1        | 2     | 3     | 4     |
| 1          | 37.9     | 39.4  | 34.2  | 75.1  |
| 2          | 33.9     | 33.2  | 33.0  | 37.4  |
| 3          | 200.0    | 200.8 | 199.7 | 199.8 |
| 4          | 124.0    | 126.4 | 125.4 | 124.7 |
| 5          | 170.4    | 167.9 | 168.6 | 169.8 |
| 6          | 32.7     | 72.5  | 32.0  | 32.5  |
| 7          | 27.1     | 34.3  | 25.1  | 26.4  |
| 8          | 22.0     | 16.2  | 30.2  | 21.5  |
| 9          | 41.5     | 41.1  | 78.2  | 42.7  |
| 10         | 35.8     | 35.3  | 41.6  | 41.3  |
| 10-Me      | 21.7     | 24.0  | 15.2  | 15.9  |

determined as nujol mulls. Mass spectra were determined on a Fisons Autospec mass spectrometer. Silica for chromatography was a Merck 9385. Petrol refers to the fraction, b.p 60-80°C. Extracts were dried over sodium sulfate.

General fermentation details: Cephalosporium aphidicola (IMI 68689) was grown on shake culture at 25°C in conical flasks (250 cm<sup>3</sup>) containing sterile medium (100 cm<sup>3</sup>) containing (per litre) glucose (80 g), ammonium nitrate (0.48 g), potassium dihydrogen phosphate (5 g), magnesium sulfate (1 g) and a trace elements solution (2 cm<sup>3</sup>) The latter contained (per 100 cm<sup>3</sup>): cobalt nitrate (0.01 g), iron(II) sulfate (0.1 g), copper sulfate (0.015 g), zinc sulfate (0.161 g), manganese sulfate (0.01 g) and ammonium molybdate (0.01 g), The substrates were added after 2 days growth and the fermentation was continued for a further 6

Steroid numbering is used for comparison purposes; systematic name, 4,4a,5,6,7,8-hexahydro-4a-methyl-2(3H)-naphthalenone.

<sup>\*</sup> Correspondence.

days. The mycelium was filtered and the broth was extracted with dichloromethane. The extract was dried and the solvent was evaporated to give the fermentation products which were separated by chromatography.

*Incubation of* (+)-hexahydro- $10\beta$ -methylnaphthal-4-en-3-one: The unsaturated ketone 1 (0.7 g) in ethanol (25 cm<sup>3</sup>) was evenly distributed between 30 flasks of C. aphidicola 2 days after inoculation. After a further 6 days the fermentation products were a recovered and separated by chromatography on silica. Elution with 20% ethyl acetate:light petroleum gave 6β -hydroxyhexahydro-10βmethylnaphthal-4-en-3-one 2 (50 mg) as an oil, (Found: M+ 180.115  $C_{11}H_{16}O_2$  requires M<sup>+</sup> 180.115),  $[\alpha]_D$  +84° (c 0.08, CHCl<sub>3</sub>).(lit.,<sup>7</sup>  $-95^{\circ}$  for enantiomer),  $v_{\text{max}}/\text{cm}^{-1}$  3404, 1675;  $\delta_{\text{H}}$  1.43 (3H, s, 10 $\beta$ -Me), 1.0-2.2 (10H, unresolved multiplets), 4.33 (1H, t, J=2.0 Hz, 6-H), 5.79 (1H, s, 4-H). Further elution with 50% ethyl acetate: light petroleum gave 9β-hydroxy-10β-methylhexahydronaphthal-4-en-3one (100 mg) as an oil, (Found: 180.115,  $C_{11}H_{16}O_2$  requires  $M^+$ 180.115),  $[\alpha]_D + 174^\circ$  (c 0.07, CHCl<sub>3</sub>), (lit.,  $^7 + 159^\circ$ )  $v_{max}/cm^{-1}$  3410, 1650; δH 1.19 (3H, s, 10β-ME), 1.0- 2.4 (10H overlapping multiplets, 3,43 (1H, dd, J=11.6 and 4.3 Hz, 9-H), 5.69 (1H, s, 4-H).

Incubation of (-)-hexahydro-10β-methylnaphthal-4-en-3-one: The unsatureated ketone **5** (0.7 g) was incubated with *C. aphidicola* as above and the metabolites were separated by chromotography. Elution with 20% ethyl acetate:light petroleum gave the starting material (400 mg). Further elution with 35% ethyl acetate light petroleum gave 6α-hydroxyhexahydro-10α-methylnaphthal-4-en-3-one **6** (15 mg) identified by its  $^1$ H NMR spectrum. Elution with 40% ethyl acetate: light petroleum gave  $1\alpha$ -hydroxyhexahydro- $10\alpha$ -methylnaphthal-4-en-3-one **7** (15 mg) as an oil, (Found: M+ 180.115,  $C_{11}H_{16}O_2$  requires M+ 180.115),  $[\alpha]_D - 74^\circ$  (c 0.02, CHCl<sub>3</sub>),  $v_{max}$  cm- $^1$  3500, 1660;  $\delta_H$  1.20

(3H, s,  $10\alpha$ -Me), 1.0-2.3 (10H overlapping multiplets), 3,88 (1H, dd, J=9.2 and 4.6 Hz, 1-H), 5.76 (1H, s, 4-H).

Reduction of the Wieland–Miescher ketone: The ketone 4 (500 mg) in ethanol (10 cm³) was treated with sodium borohydride (150 mg) and stirred at 0° for 5 min. Acetic acid (0.5 cm³) was added and the solution was stirred for 5 min. The solvent was evaporated and the residue was partitioned between dichloromethane and aqueous sodium chloride. The dichloromethane extract was separated, dried and the solvent evaporated to give a residue which was chromatographed on silica. Elution with 50% ethyl acetate:light petroleum gave 9 $\beta$ -hydroxy-10 $\beta$ -methyl-hexahydronaphthal-4-en-3-one (350 mg) identical ( $^{1}$ H NMR) to the material described above.

Received 17 July 2004; accepted 13 August 2004 Paper 04/2630

## References

- 1 see I. Kiran, J.R. Hanson and A.C. Hunter, J. Chem. Res. 2004, 362 and refs therein.
- 2 A. Farooq, J.R. Hanson and Z. Iqbal, Phytochemistry, 1994, 37, 723.
- J.R. Hanson, H. Nasir and A. Parvez, *Phytochemistry*, 1996, **42**, 411.
- 4 see for example, K. Faber, *Biotransformations in Organic Chemistry*, Springer-Verlang, Berlin, 5th edn. 2004.
- E.C. du Feu, F.J. McQuillin and R. Robinson, *J. Chem. Soc.*, 1937,
  53; C. Djerassi and D. Marshal, *J. Am. Chem. Soc.*, 1958, 80, 3986;
  F. Sondheimer and D. Rosenthal, *J. Am. Chem. Soc.*, 1958, 80, 3995.
- 6 H.L. Holland and B.J. Auret, Can. J. Chem., 1975, 53, 2041.
- 7 A. Hammoumi, G. Revial, J. D'Angelo, H.P. Girault and R. Azerad, *Tetrahedron Lett.*, 1991, 32, 651.
- 8 P. Wieland and K. Miescher, Helv. Chim. Acta, 1950, 53, 2215.